

Characterization of a b-metric space completeness via the existence of a fixed point of Ciric-Suzuki type quasi-contractive multivalued operators and applications

Hanan Alolaiyan, Basit Ali, and Mujahid Abbas

Abstract

The aim of this paper is to introduce Ciric-Suzuki type quasi-contractive multivalued operators and to obtain the existence of fixed points of such mappings in the framework of b-metric spaces. Some examples are presented to support the results proved herein. We establish a characterization of strong b-metric and b-metric spaces completeness. An asymptotic estimate of a Hausdorff distance between the fixed point sets of two Ciric-Suzuki type quasi-contractive multivalued operators is obtained. As an application of our results, existence and uniqueness of multivalued fractals in the framework of b-metric spaces is proved.

1 Introduction and preliminaries

Let (X, d) be a metric space. Let CB(X) (P(X)) be the family of nonempty closed and bounded (nonempty subsets of X). For $A, B \in CB(X)$, let

$$H(A, B) = \max \left\{ \delta(A, B), \delta(B, A) \right\}$$

where $d(x, B) = \inf_{w \in B} d(x, w)$ and $\delta(A, B) = \sup_{x \in A} d(x, B)$. The mapping H is said to be a Hausdorff metric on CB(X) induced by d. The metric space

Key Words: b-metric space, multivalued mapping, fixed point, stability, multivalued fractals. 2010 Mathematics Subject Classification: Primary 47H10, 47H04; Secondary 47H07.

Received: 20.12.2017 Accepted: 28.02.2018

ccepted: 28.02.2018

(CB(X), H) is complete if (X, d) is complete. For $f : X \to X$ and $T : X \to P(X)$, the pair (f, T) is called a hybrid pair of mappings. The fixed point problem of T is to find an $x \in X$ such that $x \in Tx$ (fixed point inclusion). The solution of a fixed point inclusion problem of T is called a fixed point of T. The set F(T) denotes the set of fixed points of T. A point $x \in X$ is a coincidence point (common fixed point) of (f, T) if $fx \in Tx$ ($x = fx \in Tx$). Denote C(f, T) and F(f, T) by the set of coincidence and common fixed point of (f, T), respectively. The hybrid pair (f, T) is w-compatible ([1]) if $f(Tx) \subseteq T(fx)$ for all $x \in C(f, T)$. A mapping f is T-weakly commuting at $x \in X$ if $f^2(x) \in T(fx)$. The letters \mathbb{R}^+ and \mathbb{N}^* will denote the set of nonnegative real numbers and the set of nonnegative integers, respectively.

A mapping $T: X \to CB(X)$ is called a *multivalued weakly Picard* operator (A MWP operator) ([34]), if for all $x \in X$ and for some $y \in Tx$, there exists a sequence $\{x_n\}$ satisfying $(a_1) x_0 = x, x_1 = y, (a_2) x_{n+1} \in Tx_n, n \in \mathbb{N}^*$ (a_3) $\{x_n\}$ converges to some $z \in F(T)$.

The sequence $\{x_n\}$ satisfying (a_1) and (a_2) is called a sequence of successive approximations (ssa at (x, y)) of T starting from (x, y).

If a single valued mapping T satisfies (a_1) to (a_3) , then it is a Picard operator.

Let $T:X\longrightarrow P(X)$ be a MWP operator. Define the mapping $T^\infty:G(T)\to P(F(T))$ by

 $T^{\infty}(x,y) = \{z : \text{ there is an ssa at } (x,y) \text{ of } T \text{ that converging to } z\}$

where $G(T) = \{(x, y) : x \in X, y \in Tx\}$ is called graph of T. A mapping $f: X \to X$ is called a selection of $T: X \to P(X)$ if C(f, T) = X.

Definition 1.1. ([34]) Let (X, d) be a metric space and c > 0. A MWP operator $T : X \longrightarrow P(X)$ is called c-multivalued weakly Picard (c-MWP) operator if there exists a selection t^{∞} of T^{∞} such that $d(x, t^{\infty}(x, y)) \leq cd(x, y)$ for all $(x, y) \in G(T)$.

One of the main result dealing with c-MWP operators is the following.

Theorem 1.2. ([34]) Let (X, d) be a metric space and $T_1, T_2 : X \to P(X)$. If T_i is a c_i -MWP operator for each $i \in \{1, 2\}$ and there exists $\lambda > 0$ such that $H(T_1x, T_2x) \leq \lambda$ for all $x \in X$. Then

$$H(F(T_1), F(T_2)) \le \lambda \max\{c_1, c_2\}.$$

Banach contraction principle (BCP) [7] states that if (X, d) is a complete metric space and $f: X \to X$ satisfies

$$d(fx, fy) \le rd(x, y) \tag{1.1}$$

for all $x, y \in X$ with $r \in (0, 1)$, then f has a unique fixed point.

Due to its applications in mathematics and other related disciplines, BCP has been generalized in many directions. Suzuki [39] proposed a contraction condition that does not imply the continuity of a mapping f. Suzuki type fixed point theorems are remarkable in the sense that these results characterize the completeness of underlying metric spaces ([39, Theorem 3]) whereas BCP does not ([15]).

A mapping $f: X \to X$ is called quasi-contraction [12, Theorem 1] if

$$d(fx, fy) \le r \max\{d(x, y), d(x, fx), d(y, fy), d(x, fy), d(y, fx)\}$$
(1.2)

for all $x, y \in X$ with $r \in [0, 1)$.

Nadler [31] proved a multivalued version of BCP as follows.

Theorem 1.3. Let (X, d) be a complete metric space and $T : X \longrightarrow CB(X)$. If for all $x, y \in X$,

 $H(Tx,Ty) \le rd(x,y)$

holds for some $r \in [0, 1)$, then F(T) is nonempty.

Amini-Harandi [2] generalized Theorem 1.3 as follows.

Theorem 1.4. [2] Let (X, d) be a complete metric space and $T : X \to CB(X)$. If for all $x, y \in X$,

 $H(Tx, Ty) \le r \max\{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)\}$ (1.3)

holds for some $r \in \left[0, \frac{1}{2}\right)$. Then F(T) is nonempty.

Define the mapping $\xi_1: [0,1) \to \left(\frac{1}{2},1\right]$ by $\xi_1(r) = \frac{1}{1+r}$.

Kikkawa and Suzuki [28] obtained an interesting generalization of Theorem 1.3 as follows.

Theorem 1.5. [28] Let (X,d) be a complete metric space and $T : X \to CB(X)$. If there exists an $r \in [0,1)$ such that

 $\xi_1(r)d(x,Tx) \le d(x,y) \text{ implies that } H(Tx,Ty) \le rd(x,y).$ (1.4)

for all $x, y \in X$. Then F(T) is nonempty.

The mapping satisfying (1.4) is called r - KS multivalued operator. Using axioms of choice, Haghi et al. [21] proved the following lemma.

Lemma 1.6. [21] For a nonempty set X and $f : X \to X$, there exists a subset $E \subseteq X$ such that f(E) = f(X) and $f : E \to X$ is one-to-one.

Euclidean distance is an important measure of "nearness" between two real or complex numbers. This notion has been generalized further in one to many directions (see [3]). Among which one of the most important generalization is the concept of a b-metric initiated by Czerwik [17]. The reader interested in fixed point results in setup of b-metric spaces is referred to ([3, 9, 14, 13, 16, 17, 18, 22, 29, 35]).

Definition 1.7. [16] Let X be a nonempty set. A mapping $d: X \times X \to [0, \infty)$ is said to be a b-metric on X if there exists some real constant $b \ge 1$ such that for any $x, y, z \in X$, the following condition hold:

- (**b**₁) d(x, y) = 0 if and only if x = y,
- **(b**₂) d(x, y) = d(y, x),
- **(b**₃) $d(x, y) \le bd(x, z) + bd(z, y)$.
- The pair (X, d) is termed as b-metric space with b-metric constant b. If (b_3) is replaced by
- **(b**₄) $d(x, y) \le d(x, z) + bd(z, y)$
- then (X, d) is called a strong b-metric space (Kirk and Shahzad [26]) with strong b-metric constant $b \ge 1$.

If b = 1, then strong b-metric space is a metric space. Every metric is a strong b-metric and every strong b-metric is b-metric but converse does not hold in general ([4, 5, 13, 16, 35]).

Consistent with [16, 17, 18, 35], the following (definitions and lemmas) will be needed in the sequel.

Lemma 1.8. [16, 17, 18, 35] Let (X,d) be a b-metric space, $x, y \in X$ and $A, B \in CB(X)$. The following statements hold:

- \mathbf{c}_1) (CB(X), H) is a b-metric space.
- \mathbf{c}_2) $d(x, B) \leq H(A, B)$ for all $x \in A$.
- $\mathbf{c}_3) \ d(x,A) \le bd(x,y) + bd(y,A).$
- **c**₄) For h > 1 and $z \in A$, there is a $w \in B$ such that $d(z, w) \leq hH(A, B)$.
- **c**₅) For every h > 0 and $z \in A$, there is a $w \in B$ such that $d(z, w) \leq H(A, B) + h$.
- **c**₆) d(w, A) = 0 if and only if $w \in \overline{A} = A$.
- **c**₇) For $\{x_n\} \subseteq X$, $d(x_0, x_n) \le bd(x_0, x_1) + \dots + b^{n-1}d(x_{n-2}, x_{n-1}) + b^{n-1}d(x_{n-1}, x_n)$.

Definition 1.9. Let (X,d) be a b-metric space. A sequence $\{x_n\}$ in X is called:

c₈) a Cauchy sequence if for any $\epsilon > 0$, there exists $n(\epsilon) \in N$ such that for each $n, m \ge n(\epsilon)$, we have $d(x_n, x_m) < \epsilon$,

9

c₉) a convergent sequence if there exists $x \in X$ such that for any $\epsilon > 0$, there exists $n(\epsilon) \in N$ with $d(x_n, x) < \epsilon$ for all $n \ge n(\epsilon)$. In this case, we write $\lim_{n\to\infty} x_n = x$.

Lemma 1.10. [36] If a sequence $\{u_n\}$ in a b-metric space (X,d) satisfies $d(u_{n+1}, u_{n+2}) \leq hd(u_n, u_{n+1})$ for all $n \in \mathbb{N}$ and for some $0 \leq h < 1$, then it is a Cauchy sequence in X provided that hb < 1.

Equivalently, a sequence $\{x_n\}$ in b-metric space X is Cauchy if and only if $\lim_{n\to\infty} d(x_n, x_{n+p}) = 0$ for all $p \in N$. A sequence $\{x_n\}$ is convergent to $x \in X$ if and only if $\lim_{n\to\infty} d(x_n, x) = 0$.

Lemma 1.11. Let (X, d) be a b-metric space, $A, B \in P(X)$. If there exists a $\lambda > 0$ such that (i) for each $\tilde{a} \in A$, there exists a $\tilde{b} \in B$ such that $d(\tilde{a}, \tilde{b}) \leq \lambda$, (ii) for each $\tilde{b} \in B$, there exists an $\tilde{a} \in A$ such that $d(\tilde{a}, \tilde{b}) \leq \lambda$, then $H(A, B) \leq \lambda$.

A subset $Y \subset X$ is closed if and only if for each sequence $\{x_n\}$ in Y which converges to an element x, we must have $x \in Y$. A subset $Y \subset X$ is bounded if diam(Y) is finite, where diam $(Y) = \sup \{d(a, b), a, b \in Y\}$. A b-metric space (X, d) is said to be complete if every Cauchy sequence in X is convergent in X.

An et al. [4] studied the topological properties of b-metric spaces. In a b-metric space (X, d), d is not necessarily continuous in each variable. In a b-metric space (X, d), If d is continuous in one variable, then d is continuous in other variable. A ball $B_{\varepsilon}(x_0) = \{x : d(x, x_0) < \varepsilon\}$ in b-metric space (X, d) is not necessarily an open set. A ball in a b-metric space (X, d) is open if d is continuous in one variable (see [4]).

In what follows we assume that a b-metric d is continuous in one variable.

Aydi et al. [6] proved the following result as a generalization of Theorem 1.4 ([2, Theorem 1.4]).

Theorem 1.12. [6] Let (X, d) be a complete b-metric space and $T : X \to CB(X)$. If there exists some $r \in [0, 1)$ with $r < \frac{1}{b^2 + b}$ such that

 $H(Tx, Ty) \le r \max \{ d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx) \}$

holds for all $x, y \in X$, then F(T) is nonempty.

Define the mapping $\xi_2 : [0,1) \to \left(\frac{1}{2},1\right]$ by $\xi_2(r) = \frac{1}{1+br}$.

Kutbi et al. [29] obtained the following Suzuki type fixed point theorem result in the setup of b-metric spaces.

Theorem 1.13. [29] Let (X, d) be a complete b-metric space and $T : X \to CB(X)$. If there exists some $r \in [0, 1)$ with $r < \frac{1}{b^2 + b}$ such that $\xi_2(r)d(x, Tx) \leq bd(x, y)$ (1.5)

implies that

$$H(Tx, Ty) \le rd(x, y) \tag{1.6}$$

for $x, y \in X$, then F(T) is nonempty.

Let (X, d) be a b-metric space, $f : X \to X, T : X \to CB(X)$ and $x, y \in X$. We use the notations

$$\begin{split} M_f(x,y) &= \max \left\{ d(x,y), d(x,fx), d(y,fy), d(x,fy), d(y,fx) \right\}, \\ M_T(x,y) &= \max \left\{ d(x,y), d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx) \right\}, \\ M_T^f(x,y) &= \max \left\{ d(fx,fy), d(fx,Tx), d(fy,Ty), d(fx,Ty), d(fy,Tx). \right\} \end{split}$$

Define

$$\Lambda = \left\{ \xi : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R} : \xi(s, t) \le \frac{s}{b} - t \right\}$$

where b is the b-metric constant. Note that $\xi(bt,t) \leq 0$ and $\xi\left(s,\frac{s}{b}\right) \leq 0$ for all $s \in \mathbb{R}^+$.

Example 1.14. For $i \in \{3, 4\}$, define $\xi_i : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ by

- (1) $\xi_3(s,t) = \psi(s) \varphi(t)$, where $\psi, \varphi : \mathbb{R}^+ \to \mathbb{R}^+$ are functions satisfying $\psi(t) \leq \frac{t}{b}, t \leq \varphi(t), \text{ and } b \geq 1.$
- (2) $\xi_4(s,t) = \frac{s}{b} \frac{\psi(s,t)}{\varphi(s,t)}t$, where $\psi, \varphi : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$ are functions satisfying $\varphi(s,t) \le \psi(s,t)$ for all $s,t \ge 0$.

Definition 1.15. Let (X, d) be a b-metric space. A mapping $T : X \to CB(X)$ is called a Ciric-Suzuki type quasi-contractive multivalued operator if there exists an $r \in [0, 1)$ satisfying $r < \frac{1}{b^2 + b}$ such that

$$\xi(d(x,Tx),d(x,y)) \le 0 \tag{1.7}$$

implies that

$$H(Tx, Ty) \le rM_T(x, y) \tag{1.8}$$

for all $x, y \in X$, where $\xi \in \Lambda$.

If $CB(X) = \{\{x\} : x \in X\}$, then $T : X \to CB(X)$ is called a Ciric-Suzuki type quasi-contractive operator.

Definition 1.16. Let (X,d) be a b-metric space, $f: X \to X$ and $T: X \to CB(X)$. A hybrid pair (f,T) is said to be Ciric-Suzuki type quasi-contractive hybrid pair if there exists an $r \in [0,1)$ satisfying $r < \frac{1}{b^2 + b}$ such that

$$\xi(d(fx, Tx), d(fx, fy)) \le 0 \tag{1.9}$$

implies that

$$H(Tx, Ty) \le rM_T^f(x, y) \tag{1.10}$$

for all $x, y \in X$ and for some $\xi \in \Lambda$.

In this paper, we obtain fixed point results for Ciric-Suzuki type quasicontractive multivalued operators in b-metric space. Further, completeness characterization of strong b-metric and b-metric spaces via the existence of fixed point of Ciric-Suzuki type quasi-contractive operators is obtained. Our results extend, unify and generalize the comparable results in [2, 6, 12, 27, 29, 31, 33, 39]. As applications of our results:

- 1 We prove the existence of coincidence and common fixed point of hybrid pair of Ciric-Suzuki type quasi-contractive single valued and multivalued operators.
- 2 We give an estimate of Hausdorff distance between the fixed point sets of two Ciric-Suzuki type quasi-contractive multivalued operators.
- **3** We show that for a uniformly convergent sequence of Ciric-Suzuki type quasi-contractive multivalued operators, the corresponding sequence of fixed points set is uniformly convergent.
- 4 We obtain a unique multivalued fractal with respect to iterated multifunction system of Ciric-Suzuki type quasi-contractive multivalued operators.

2 Fixed points of Ciric-Suzuki type quasi-contractive multivalued operators

In this section, we obtain some fixed point results of Ciric-Suzuki type quasicontractive multivalued operators in the framework of complete b-metric spaces. We start with the following result.

Theorem 2.1. Let (X, d) be a complete b-metric space and $T : X \longrightarrow CB(X)$ a Ciric-Suzuki type quasi-contractive multivalued operator. Then T is a MWP operator. *Proof.* Let u and v be given points in X. If $M_T(u, v) = 0$, then $u = v \in Tu$. Define a sequence $\{u_n\}$ by $u_n = u = v$, for all $n \in \mathbb{N}^*$. Clearly, $u_n \in Tu_n$ and $\{u_n\}$ converges to $u = v \in F(T)$. Hence T is a MWP operator.

Suppose that $M_T(u, v) > 0$ for all $u, v \in X$. As $r < \frac{1}{b^2 + b}$, there exist $\alpha \in \mathbb{R}^+$ such that $\frac{r}{2} + \alpha = \frac{1}{2} \left(\frac{1}{b^2 + b} \right)$. Clearly, $0 < r + \alpha = \frac{1}{2} \left(\frac{1}{b^2 + b} + r \right) = \beta$ (say) < 1.

Let u_0 be any point in X and $u_1 \in Tu_0$. Note that

$$\begin{aligned} \xi \left(d \left(u_0, T u_0 \right), d \left(u_0, u_1 \right) \right) &\leq & \frac{1}{b} d \left(u_0, T u_0 \right) - d \left(u_0, u_1 \right) \\ &\leq & d \left(u_0, T u_0 \right) - d \left(u_0, u_1 \right) \\ &\leq & d \left(u_0, u_1 \right) - d \left(u_0, u_1 \right) = 0. \end{aligned}$$

As T is a Ciric-Suzuki type quasi-contractive multivalued operator, we obtain that

$$H(Tu_0, Tu_1) \le rM_T(u_0, u_1). \tag{2.1}$$

By Lemma 1.8, there exists an element $u_2 \in Tu_1$ such that

$$d(u_1, u_2) \le H(Tu_0, Tu_1) + \alpha M_T(u_0, u_1).$$
(2.2)

From (2.1) and (2.2), we have

$$\begin{aligned} d(u_1, u_2) &\leq H(Tu_0, Tu_1) + \alpha M_T(u_0, u_1) \\ &\leq r M_T(u_0, u_1) + \alpha M_T(u_0, u_1) \\ &= \beta M_T(u_0, u_1) \\ &= \beta \max \left\{ d(u_0, u_1), d(u_0, Tu_0), (u_1, Tu_1), d(u_0, Tu_1), d(u_1, Tu_0) \right\} \\ &\leq \beta \max \left\{ d(u_0, u_1), d(u_0, u_1), (u_1, u_2), d(u_0, u_2), d(u_1, u_1) \right\} \\ &\leq \beta \max \left\{ d(u_0, u_1), (u_1, u_2), b \left(d(u_0, u_1) + d(u_1, u_2) \right) \right\} \\ &= b\beta \left(d(u_0, u_1) + d(u_1, u_2) \right). \end{aligned}$$

That is

$$d(u_1, u_2) \le b\beta \left(d(u_0, u_1) + d(u_1, u_2) \right).$$
(2.3)

 \mathbf{As}

$$\begin{aligned} \xi \left(d \left(u_1, T u_1 \right), d \left(u_1, u_2 \right) \right) &\leq & \frac{1}{b} d \left(u_1, T u_1 \right) - d \left(u_1, u_2 \right) \\ &\leq & d \left(u_1, T u_1 \right) - d \left(u_1, u_2 \right) \\ &\leq & d \left(u_1, u_2 \right) - d \left(u_1, u_2 \right) = 0 \end{aligned}$$

We have

$$H(Tu_1, Tu_2) \le rM_T(u_1, u_2).$$
 (2.4)

Again by Lemma 1.8, there exists an element $u_3 \in Tu_2$ such that

$$d(u_2, u_3) \le H(Tu_1, Tu_2) + \alpha M_T(u_1, u_2).$$
(2.5)

By (2.4) and (2.5), we obtain that

$$\begin{aligned} d(u_2, u_3) &\leq H(Tu_1, Tu_2) + \alpha M_T(u_1, u_2) \\ &\leq r M_T(u_1, u_2) + \alpha M_T(u_1, u_2) \\ &= \beta M_T(u_1, u_2) \\ &= \beta \max \left\{ d(u_1, u_2), d(u_1, Tu_1), (u_2, Tu_2), d(u_1, Tu_2), d(u_2, Tu_1) \right\} \\ &\leq \beta \max \left\{ d(u_1, u_2), d(u_1, u_2), (u_2, u_3), d(u_1, u_3), d(u_2, u_2) \right\} \\ &\leq \beta \max \left\{ d(u_1, u_2), (u_2, u_3), b \left(d(u_1, u_2) + d(u_2, u_3) \right) \right\} \\ &= b\beta \left(d(u_1, u_2) + d(u_2, u_3) \right). \end{aligned}$$

That is

$$d(u_2, u_3) \le b\beta \left(d(u_1, u_2) + d(u_2, u_3) \right).$$
(2.6)

Continuing this way, we can obtain a sequence $\{u_n\}$ in X such that $u_{n+1} \in Tu_n$ and it satisfies:

$$d(u_n, u_{n+1}) \le b\beta \left(d(u_{n-1}, u_n) + d(u_n, u_{n+1}) \right)$$
(2.7)

 $n \in \mathbb{N}^*$. If $\delta_n = d(u_n, u_{n+1})$, then from (2.7), we have $\delta_n \leq \gamma \delta_{n-1}$, where $\gamma = \frac{b\beta}{1 - b\beta}$. Now by $b \geq 1$ and $r < \frac{1}{b^2 + b}$, we have

$$b\beta = \frac{b}{2}\left(\frac{1}{b^2+b}+r\right) < \frac{1}{1+b} \text{ and } \gamma = \frac{b\beta}{1-b\beta} < \frac{1}{b}.$$

That is $b\gamma < 1$. By Lemma 1.10 , $\{u_n\}$ is a Cauchy sequence and hence

$$\lim_{n \to \infty} d(u_n, z) = 0 \tag{2.8}$$

for some $z \in X$. Now we claim that

$$d(z, Tx) \le r \max\{d(z, x), d(x, Tx)\}\tag{2.9}$$

for all $x \neq z$. As $\lim_{n \to \infty} d(u_n, z) = 0$, there exists $n_0 \in \mathbb{N}$ such that $d(u_n, z) < \infty$

 $\frac{1}{3b}d(z,x)$ for all $n \ge n_0$ and $x \ne z$. Note that

$$\begin{aligned} \xi \left(d(u_n, Tu_n), d(u_n, x) \right) &\leq \frac{1}{b} d(u_n, Tu_n) - d(u_n, x) \\ &\leq \frac{1}{b} d(u_n, u_{n+1}) - d(u_n, x) \\ &\leq \frac{1}{b} \left(bd(u_n, z) + bd(z, u_{n+1}) \right) - d(u_n, x) \\ &\leq \frac{2}{3b} d(z, x) - d(u_n, x) \\ &= \frac{1}{b} \left(d(z, x) - \frac{1}{3} d(z, x) \right) - d(u_n, x) \\ &\leq \frac{1}{b} \left(d(z, x) - bd(u_n, z) \right) - d(u_n, x) \\ &\leq \frac{1}{b} \left(bd(u_n, x) \right) - d(u_n, x) = 0 \end{aligned}$$

for all $n \ge n_0$. That is

$$\xi(d(u_n, Tu_n), d(u_n, x)) \le 0$$
(2.10)

for all $n \ge n_0$. Thus

$$d(u_{n+1}, Tx) \leq H(Tu_n, Tx) \\ \leq rM_T(u_n, x) \\ = r \max \{ d(u_n, x), d(u_n, Tu_n), d(x, Tx), d(u_n, Tx), d(x, Tu_n) \} \\ \leq r \max \{ d(u_n, x), d(u_n, u_{n+1}), d(x, Tx), d(u_n, Tx), d(x, u_{n+1}) \}$$

for all $n \ge n_0$. Now, by taking limit as $n \to \infty$ on both sides of the above inequality, it follows that

$$d(z, Tx) \le r \max\left\{d(z, x), d(x, Tx), d(z, Tx)\right\}.$$

If max $\{d(z, x), d(x, Tx), d(z, Tx)\} = d(z, Tx)$, then we obtain that

$$d(z, Tx) \le rd(z, Tx) < \beta d(z, Tx) < d(z, Tx),$$

a contradiction and hence (2.9) holds for all $x \neq z$. Now we show that $z \in Tz$. Assume on contrary that $z \notin Tz$. Clearly, $r < \frac{1}{b^2 + b}$ implies that 2rb < 1. We now choose $a \in Tz$ such that $a \neq z$ and $d(z, a) < d(z, Tz) + (\frac{1}{2rb} - 1) d(z, Tz)$. That is That is 5

$$2brd(z,a) < d(z,Tz).$$
 (2.11)

Note that

$$\begin{split} \xi \left(d(z,Tz), d(z,a) \right) &\leq \frac{1}{b} d(z,Tz) - d(z,a) \\ &\leq d(z,Tz) - d(z,a) \leq d(z,a) - d(z,a) = 0. \end{split}$$

Hence

$$\begin{aligned} H(Tz,Ta) &\leq rM_T(z,a) \\ &\leq r\max\{d(z,a),d(z,Tz),d(a,Ta),d(z,Ta),d(a,Tz)\} \\ &\leq r\max\{d(z,a),d(z,a),d(a,Ta),d(z,Ta),d(a,a)\} \\ &= r\max\{d(z,a),d(a,Ta),d(z,Ta)\}. \end{aligned}$$

If max $\{d(z, a), d(a, Ta), d(z, Ta)\} = d(a, Ta)$, then we have

$$d(a, Ta) \le H(Tz, Ta) \le rd(a, Ta)$$

which implies either $a \in Ta$ or d(a, Ta) < d(a, Ta), a contradiction. Hence

$$H(Tz, Ta) \le r \max\left\{d(z, a), d(z, Ta)\right\}.$$

If max $\{d(z,a), d(a,Ta), d(z,Ta)\} = d(z,Ta)$, then (2.9) gives that

$$\begin{array}{rcl} H(Tz,Ta) &\leq & rd(z,Ta) \\ &\leq & r^2 \max\{d(z,a),d(a,Ta)\} \\ &\leq & r \max\{d(z,a),d(a,Ta)\}. \end{array}$$

As $\max\{d(z, a), d(a, Ta)\} = d(a, Ta)$, is not possible, we have

$$H(Tz,Ta) \le rd(z,a). \tag{2.12}$$

From (2.9) and (2.12), we obtain that

$$d(z, Ta) \le r \max\{d(z, a), d(a, Ta)\} \le r \max\{d(z, a), H(Tz, Ta)\} \le rd(z, a).$$
(2.13)

Now, by (2.11), (2.12), and (2.13), we have

$$d(z,Tz) \leq bd(z,Ta) + bH(Tz,Ta)$$

$$\leq brd(z,a) + brd(z,a)$$

$$= 2brd(z,a) < d(z,Tz),$$

a contradiction. Hence $z \in Tz$.

Remark 2.2. We obtain Theorem 1.12 as a special case of Theorem 2.1.

Remark 2.3. Theorem 1.13 follows from 2.1. Indeed, define the mapping ξ by $\xi(s,t) = \frac{\xi_2(r)}{b}s - t$, where $\xi_2(r) = \frac{1}{1+br}$. Clearly, $\xi(s,t) \leq \frac{s}{b} - t$ as $\xi_2(r) \leq 1$. Take s = d(x,Tx), t = d(x,y) and

 $\max \{ d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx) \} = d(x, y).$

Corollary 2.4. Let (X,d) be a complete b-metric space and $T : X \longrightarrow CB(X)$. If for any $x, y \in X$, $d(x,Tx) \leq bd(x,y)$ implies that

 $H(Tx,Ty) \leq r \max\left\{d(x,y), d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx)\right\}$

for some $r \in \left[0, \frac{1}{b^2 + b}\right)$. Then T is a MWP operator.

Example 2.5. Let $X = \{x_1, x_2, x_3, x_4, x_5\}$ and $d: X \times X \to \mathbb{R}^+$ be defined as $d(x_1, x_2) = d(x_1, x_3) = 3$, $d(x_1, x_4) = d(x_1, x_5) = 12$, $d(x_2, x_5) = d(x_3, x_4) = d(x_3, x_5) = 9$, $d(x_2, x_4) = 8$, $d(x_2, x_3) = 6$, $d(x_4, x_5) = 2$, d(x, x) = 0 and d(x, y) = d(y, x) for all $x, y \in X$. As $12 = d(x_1, x_4) \nleq d(x_1, x_2) + d(x_2, x_4) = 11$, d is not a metric on X. On the other hand, (X, d) is a complete b-metric space with parameter $b \ge \frac{12}{11} > 1$. Suppose that $\xi(s, t) = \frac{s}{b} - t \in \Lambda$, $r = \frac{2}{5}$. Then $r < \frac{121}{276} = \frac{1}{b^2 + b}$. Define the mapping $T: X \longrightarrow CB(X)$ by

$$Tx = \begin{cases} \{x_1\} & \text{if } x = x_1, x_2, x_3, \\ \{x_2\} & \text{if } x = x_4, \\ \{x_3\} & \text{if } x = x_5. \end{cases}$$

Note that $H(Tx,Ty) = 0 \leq rM_T(x,y)$ for all $x, y \in \{x_1, x_2, x_3\}$. If $x = x_1$ and $y \in \{x_4, x_5\}$, then $H(Tx,Ty) = d(x,y) = 3 \leq 4.8 = rd(x,y) \leq rM_T(x,y)$. If $x = x_2$ and $y = x_4$, then we have $H(Tx_2,Tx_4) = d(x_1,x_2) = 3 \leq 3.2 = rd(x_2,x_4) \leq rM_T(x_2,x_4)$. For, $x \in \{x_2,x_3\}$ and $y \in \{x_4,x_5\}$, we have $H(Tx,Ty) = 3 \leq 3.6 = rd(x,y) \leq rM_T(x,y)$. Note that

$$\xi \left(d(x_4, Tx_4), d(x_4, x_5) \right) = \frac{11d(x_4, x_2)}{12} - d(x_4, x_5) = \frac{16}{3} > 0, \text{ and}$$

$$\xi \left(d(x_5, Tx_5), d(x_5, x_4) \right) = \frac{11d(x_5, x_3)}{12} - d(x_5, x_4) = \frac{25}{4} > 0.$$

Hence, for all $x, y \in X$, we have $\xi(d(x,Tx), d(x,y)) \leq 0$ implies that $H(Tx,Ty) \leq rM_T(x,y)$. Thus all the conditions of Theorem 2.1 are satisfied. On the other hand, if we take $x = x_4$, $y = x_5$, then we have

$$\begin{aligned} H(Tx_4, Tx_5) &= d(x_2, x_3) = 6 \ and \\ M_T(x_4, x_5) &= \max\{d(x_4, x_5), d(x_4, Tx_4), d(x_5, Tx_5), d(x_4, Tx_5), d(x_5, Tx_4)\} \\ &= \max\{d(x_4, x_5), d(x_4, x_2), d(x_5, x_3), d(x_4, x_3), d(x_5, x_2)\} = 9. \end{aligned}$$

Hence $H(Tx_4, Tx_5) = 6 \leq 3.6 = 9r = rM_T(x_4, x_5)$ for any $r < \frac{121}{276} = \frac{1}{b^2 + b}$. Thus, Theorem 1.12 is not applicable in this case. Hence Theorem 2.1 is a proper generalization of Theorem 1.12 which in turn generalize Theorems 1.3, 1.4 and [12, Theorem 1].

Example 2.6. Let $X = \{x_1, x_2, x_3\}$ and $d : X \times X \to \mathbb{R}^+$ be defined as $d(x_1, x_2) = 4$, $d(x_1, x_3) = 1$, $d(x_2, x_3) = 2$, d(x, x) = 0 and d(x, y) = d(y, x) for all $x, y \in X$. As $4 = d(x_1, x_2) \nleq d(x_1, x_3) + d(x_3, x_2) = 3$, d is not a metric on X. Indeed (X, d) is a b-metric space with $b \ge \frac{4}{3} > 1$. Define the mapping $T : X \longrightarrow CB(X)$ by

$$Tx = \begin{cases} \{x_1, x_3\} & \text{if } x = x_1, x_3, \\ \{x_1\} & \text{if } x = x_2. \end{cases}$$

Let $\xi(s,t) = \frac{s}{b} - t \in \Lambda$ and $r = \frac{3}{10}$. Clearly, $r < \frac{9}{28} = \frac{1}{b^2 + b}$. If $x, y \in \{x_1, x_3\}$, then $H(Tx, Ty) = 0 \leq rM_T(x, y)$. If $x \in \{x_1, x_3\}$ and $y = x_2$, then $H(Tx, Ty) = 1 \leq 1.2 \leq rM_T(x, y)$. Hence for any $x, y \in X$, $\xi(d(x, Tx), d(x, y)) \leq 0$ implies that $H(Tx, Ty) \leq rM_T(x, y)$. Thus, all the conditions of Theorem 2.1 are satisfied. On the other hand, if $x = x_2, y = x_3$, then $\xi_2(r)d(x_3, Tx_3) = 0 \leq bd(x_3, x_2) = 2$, and $H(Tx_3, Tx_2) = d(x_1, x_3) = 1$. So, $H(Tx_3, Tx_2) = 1 \nleq 0.6 = 2r = rd(x_3, x_2)$ for any $r < \frac{9}{28} = \frac{1}{b^2 + b}$. Hence Theorem 1.13 is not applicable in this case. This implies that Theorem 2.1 is a proper generalization of Theorem 1.13 which itself is a generalization of Theorem 1.3.

Corollary 2.7. Let (X, d) be a complete b-metric space and $f : X \longrightarrow X$ a Ciric-Suzuki type quasi-contractive operator. Then $F(f) = \{u\}$, and the sequence $\{f^nx\}$ converges to u for any choice of an element $x \in X$.

Proof. It follows from Theorem 2.1 that F(f) is nonempty and for all $x \in X$, the sequence $f^n x \to u$ as $n \to \infty$. To prove the uniqueness of fixed point of f; let $u, v \in F(f)$ with $u \neq v$. Note that $\xi (d(u, fu), d(u, v)) \leq \frac{1}{b} d(u, fu) - d(u, v) = -d(u, v) \leq 0$. Thus, we have

$$d(u,v) = d(fu, fv) \le rM_f(u, v)$$

= $r \max\{d(u, v), d(u, fu), d(v, fv), d(u, fv), d(v, fu)\}$
= $rd(u, v) < d(u, v),$

a contradiction and hence F(f) is singleton.

Corollary 2.8. Let (X, d) be a complete b-metric space and $f : X \longrightarrow X$. If for any $x, y \in X$, $d(x, fx) \leq bd(x, y)$ implies that $d(fx, fy) \leq rd(x, y)$ for some $r \in \left[0, \frac{1}{b^2 + b}\right)$. Then $F(f) = \{u\}$ and the sequence $\{f^nx\}$ converges to u for any choice of an element $x \in X$.

Corollary 2.9. Let (X,d) be a complete b-metric space and $f: X \longrightarrow X$ a mapping. If there exists a $\xi \in \Lambda$ and an $r \in [0,1)$ with $r < \frac{1}{b^2+b}$ such that $\xi(d(x,fx),d(x,y)) \leq 0$ implies that $d(fx,fy) \leq rd(x,y)$ for all $x, y \in X$. Then $F(f) = \{u\}$, and the sequence $\{f^nx\}$ converges to u for any choice of an element $x \in X$.

Proof. It follows from Corollary 2.7.

Corollary 2.10. Let (X, d) be a complete b-metric space and $f : X \longrightarrow X$ a mapping. If there exists a $r \in [0, 1)$ with $r < \frac{1}{b^2+b}$ such that $\eta(r)d(x, fx) \leq bd(x, y)$ implies that $d(fx, fy) \leq rd(x, y)$ for all $x, y \in X$, where $\eta : [0, 1) \rightarrow (0, 1]$. Then $F(f) = \{u\}$, and the sequence $\{f^nx\}$ converges to u for any choice of an element $x \in X$.

Proof. Consider $\xi(s,t) = \frac{\eta(r)}{b}s - t \leq \frac{s}{b} - t$. Hence $\xi \in \Lambda$. If s = d(x, fx) and t = d(x, y) then $\xi(d(x, fx), d(x, y)) = \frac{\eta(r)}{b}s - t \leq 0$. Hence result follows from Corollary 2.9.

Corollary 2.11. Let (X,d) be a complete strong b-metric space and $f : X \longrightarrow X$ a mapping. If there exists a $r \in [0,1)$ with $r < \frac{1}{b^2+b}$ such that $\eta(r)d(x,fx) \leq bd(x,y)$ implies that $d(fx,fy) \leq rd(x,y)$ for all $x,y \in X$, where $\eta : [0,1) \rightarrow (0,1]$. Then $F(f) = \{u\}$, and the sequence $\{f^nx\}$ converges to u for any choice of an element $x \in X$.

Proof. It follows from Corollary 2.10 as every strong b-metric is b-metric. \Box

3 Characterization of a b-metric space completeness

Connel studied properties of fixed point sets and presented an example [15, Example 3] of a separable and locally contractible incomplete metric space that has a fixed point property (FPP) for contraction mappings. This shows that BCP does not characterize metric completeness (see also [20]). Kannan [24, 25] proved a fixed point theorem which is independent of BCP. Subrahmanyam [38] proved that if underlying metric space X has FPP for Kannan type contractions, then X is complete. Suzuki [39] presented a fixed point theorem that also characterize metric completeness of X. For more details on FPP and completeness properties of metric spaces, see [11].

In this section, we present some results about the strong b-metric and b-metric completeness characterizations via fixed point results obtained in section 2.

Jovanovic et al. [23] proved the following version of BCP in b-metric spaces.

Theorem 3.1. Let (X,d) be a complete b-metric space and $T: X \to X$ a map such that $d(Tx,Ty) \leq rd(x,y)$ for all $x, y \in X$ and some $r \in \left[0,\frac{1}{b}\right)$. Then F(T) is singleton.

Dung et al. [19] replaced the condition $0 \le r < \frac{1}{b}$ with $0 \le r < 1$ and proved that BCP can be transported in b-metric spaces without imposing any additional condition on a contraction constant r.

They proved the following result.

Theorem 3.2. Let (X,d) be a complete b-metric space and $T : X \to X$ a map such that $d(Tx,Ty) \leq rd(x,y)$ for all $x, y \in X$ and some $r \in [0,1)$. Then F(T) is singleton.

Park and Rhoads [32] commented on characterization of metric completeness.

We present analogous comments in b-metric spaces.

Let (X, d) be a b-metric space and B a class of mappings of a b-metric space X such that if any map in B has a fixed point then X is complete. Let A be a class of mappings of a b-metric space X containing B such that completeness of X implies the existence of fixed point of any map in A.

Theorem 3.3. (compare [32]) If (X, d) is a b-metric space, then

X is complete if and only if any map in A has a fixed point.

Proof. If X is complete then, any map in A has a fixed point. Conversely, let any map in A has a fixed point, then any map in B has a fixed point. Then by assumption on B, X is complete.

We present the following lemma that is needed to prove the main result in this section.

Lemma 3.4. Let (X,d) be a strong b-metric space and $\{x_n\}$ a Cauchy sequence in X. Then $d(x,x_n)$ is a Cauchy sequence in \mathbb{R} for all x in X.

Proof. Note that

$$d(x, x_n) \le d(x, x_m) + bd(x_m, x_n)$$

for each $n, m \in \mathbb{N}$. Thus, we have

$$|d(x,x_n) - d(x,x_m)| \le bd(x_m,x_n)$$

for each $n, m \in \mathbb{N}$. The result follows as $\{x_n\}$ is a Cauchy sequence in X. \Box

The following result gives the characterization of completeness of a strong b-metric space.

Theorem 3.5. Let (X,d) be a strong b-metric space. For $r \in [0,1)$ with $r < \frac{1}{b^2+b}$, let $A_{r,\eta}$ be a class of mappings T on X which satisfies the following :

(a) For any $x, y \in X$

 $\eta(r)d(x,Tx) \le bd(x,y) \text{ implies that } d(Tx,Ty) \le rd(x,y)$ (3.1)

where $\eta : [0, 1) \to (0, 1]$.

Let $B_{r,\eta}$ be the class of mappings T on X satisfying (a) and the following:

- (b) T(X) is countably infinite.
- (c) Every subset of T(X) is closed.

Then the following are equivalent:

- (i) (X, d) is complete,
- (ii) Every mapping $T \in A_{r,\eta}$ has a fixed point for all $r \in [0,1)$ with $r < \frac{1}{b^2+b}$.
- (iii) There exists an $r \in (0,1)$ with $r < \frac{1}{b^2+b}$ such that every mapping $T \in B_{r,\eta}$ has a fixed point.

Proof. It follows from Corollary 2.11 that (i) implies (ii). As $B_{r,\eta} \subseteq A_{r,\eta}$, so (ii) implies (iii). We now show that (iii) implies (i). Suppose that (X, d) is not complete. That is, there exists a Cauchy sequence $\{u_n\}$ which does not converge. Define a function $f: X \to [0, \infty)$ by $f(x) = \lim_{n \to \infty} d(x, u_n)$ for $x \in X$. By Lemma 3.4, $\{d(x, u_n)\}$ is a Cauchy sequence in \mathbb{R} for each $x \in X$. Hence f is well defined. Note that f(x) > 0 for every $x \in X$ and $\lim_{n \to \infty} f(u_n) = 0$. Consequently, for every $x \in X$ there exists a $v \in \mathbb{N}$ such that

$$f(u_v) \le \left(\frac{r\eta(r)}{3b^3 + r\eta(r)}\right) f(x). \tag{3.2}$$

Define $T(x) = u_v$. Then

$$f(Tx) \le \left(\frac{r\eta(r)}{3b^3 + r\eta(r)}\right) f(x) \text{ and } Tx \in \{u_n : n \in \mathbb{N}\}$$
(3.3)

for all $x \in X$. From (3.3), we have f(Tx) < f(x), and hence $Tx \neq x$ for all $x \in X$. That is, T has no fixed point. As $T(X) \subset \{u_n : n \in \mathbb{N}\}$, so (b) holds. It is easy to show that (c) holds. Note that, for all $x, y \in X$

$$f(x) - f(y) \le bd(x, y)$$

$$f(y) - f(x) \le bd(x, y)$$

$$f(x) - f(Tx) \le bd(x, Tx) \text{ and }$$

$$d(Tx, Ty) \le f(Tx) + bf(Ty).$$

Fix $x, y \in X$ such that $\eta(r)d(x, Tx) \leq bd(x, y)$. We now show that (3.1) holds. Observe that

$$\begin{cases} d(x,y) \ge \frac{\eta(r)}{b} d(x,Tx) \ge \frac{\eta(r)}{b^2} (f(x) - f(Tx)) \\ \ge \frac{\eta(r)}{b^2} \left(1 - \frac{r\eta(r)}{3b^3 + r\eta(r)} \right) f(x) = \frac{3b\eta(r)}{3b^3 + r\eta(r)} f(x). \end{cases}$$
(3.4)

We now divide the proof in two cases.

Case (1) Suppose that $f(y) \ge 2bf(x)$. Then

$$\begin{aligned} d(Tx,Ty) &\leq f(Tx) + bf(Ty) \\ &\leq \frac{r\eta(r)}{3b^3 + r\eta(r)} fx + \frac{br\eta(r)}{3b^3 + r\eta(r)} fy \\ &\leq \frac{r}{3b} (fx + fy) + \frac{2r}{3b} (fy - 2bfx) = \frac{r}{3} \left(\frac{1}{b} fx + \frac{1}{b} fy + \frac{2}{b} fy - \frac{4}{b} fx\right) \\ &\leq \frac{r}{3} \left(\frac{3}{b} fy - \frac{3}{b} fx\right) \leq r \left(\frac{1}{b} fy - \frac{1}{b} fx\right) \leq rd(x,y). \end{aligned}$$

Case (2) If f(y) < 2bf(x), then by (3.4) we have

$$\begin{aligned} d(Tx,Ty) &\leq bf(Tx) + f(Ty) \\ &\leq \frac{br\eta(r)}{3b^3 + r\eta(r)} fx + \frac{r\eta(r)}{3b^3 + r\eta(r)} fy \\ &\leq \frac{br\eta(r)}{3b^3 + r\eta(r)} fx + \frac{2br\eta(r)}{3b^3 + r\eta(r)} fx \\ &= \frac{3br\eta(r)}{3b^3 + r\eta(r)} fx = r \frac{3b\eta(r)}{3b^3 + r\eta(r)} fx \leq rd(x,y). \end{aligned}$$

Hence $\eta(r)d(x,Tx) \leq bd(x,y)$ implies that

$$d(Tx, Ty) \le rd(x, y)$$

for all $x, y \in X$. From (iii), a mapping T has a fixed point which gives a contradiction. Hence X is complete and consequently (iii) implies (i).

Remark 3.6. Let $\{x_n\}$ be a Cauchy sequence in a b-metric space X. If $\{x_n\}$ is convergent to some $u \in X$, then for any $x \in X$, $\{d(x, x_n)\}$ is convergent in \mathbb{R} and hence Cauchy in \mathbb{R} . If $\{x_n\}$ is not convergent, then from triangular inequality of b-metric, it does not follow necessarily the Cauchyness of $d(x, x_n)$ in \mathbb{R} . Assume that F is the class of b-metrics d and for any Cauchy sequence $\{x_n\}$ in X and for any x in X, $\{d(x, x_n)\}$ is Cauchy in \mathbb{R} . Consider a metric space (X, ρ) with $d(x, y) = (\rho(x, y))^p$ for p > 1. Then d is a b-metric on X (see [26]). Hence F is nonempty.

Now we present the following result which deals with characterization of a completeness of b-metric space.

Theorem 3.7. Let (X, d) be a b-metric space such that $d \in F$. For $r \in [0, 1)$ with $r < \frac{1}{b^2+b}$, let $A_{r,\eta}$ be a class mappings T on X which satisfies the following:

(a) For $x, y \in X$

 $\eta(r)d(x,Tx) \le bd(x,y) \text{ implies that } d(Tx,Ty) \le rd(x,y)$ (3.5)

where $\eta : [0,1) \to (0,1]$.

Let $B_{r,\eta}$ be the class of mappings T on X satisfying (a) and the following conditions:

- (b) T(X) is countably infinite.
- (c) Every subset of T(X) is closed.

Then the following are equivalent:

- (i) (X, d) is complete,
- (ii) Every mapping $T \in A_{r,\eta}$ has a fixed point for all $r \in [0,1)$ with $r < \frac{1}{h^2 + h}$.
- (iii) There exists an $r \in (0,1)$ with $r < \frac{1}{b^2+b}$ such that every mapping $T \in B_{r,\eta}$ has a fixed point.

Proof. By Corollary 2.10 (i) implies (ii). As $B_{r,\eta} \subseteq A_{r,\eta}$, so we have (ii) implies (iii). Now we prove that (iii) implies (i). Assume that (iii) holds. Suppose that (X, d) is not complete. Define the function $f : X \to [0, \infty)$ by $f(x) = \lim_{n \to \infty} d(x, u_n)$ for $x \in X$. By given assumption, $\{d(x, u_n)\}$ is a Cauchy sequence in \mathbb{R} for each $x \in X$. Hence f is well defined. Note that f(x) > 0 for every $x \in X$ and $\lim_{n \to \infty} f(u_n) = 0$. Consequently, for every $x \in X$, there exists a $v \in \mathbb{N}$ such that

$$f(u_{\nu}) \le \left(\frac{r\eta(r)}{3b^4 + rb\eta(r)}\right) f(x).$$
(3.6)

Define $T(x) = u_v$, then we have

$$f(Tx) \le \left(\frac{r\eta(r)}{3b^4 + rb\eta(r)}\right) f(x) \text{ and } Tx \in \{u_n : n \in \mathbb{N}\}$$
(3.7)

for all $x \in X$. The rest of the proof is obtained following similar arguments to those arguments similar to those in the proof of Theorem 3.7.

4 Coincidence and common fixed point of hybrid pair of Ciric-Suzuki type quasi-contractive operators

In this section, we apply Theorem 2.1 to obtain the existence of coincidence and common fixed point of hybrid pair of Ciric-Suzuki type quasi-contractive multivalued operators and single-valued self mappings in the setup of b-metric spaces.

Theorem 4.1. Let (X, d) be a b-metric space and (f, T) a Ciric-Suzuki type quasi-contractive hybrid pair with $T(X) \subseteq f(X)$ and f(X) a complete subspace of X. Then C(f,T) is nonempty. Furthermore, F(f,T) is nonempty if any of the following conditions hold:

- **C**₁- The hybrid pair (f,T) is w-compatible, $\lim_{n\to\infty} f^n(x) = u$ for some $u \in X$ and $x \in C(f,T)$ and f is continuous at u.
- **C**₂- The mapping f is T-weakly commuting at some $x \in C(f,T)$ and $f^2x = fx$.
- **C**₃- The mapping f is continuous at at some $x \in C(f,T)$ and $\lim_{n \to \infty} f^n(u) = x$ for some $u \in X$.

Proof. By Lemma 1.6, there is a set $E \subseteq X$ such that $f : E \to X$ is one-to-one and f(E) = f(X). Define the mapping $\mathcal{T} : f(E) \to CB(X)$ by $\mathcal{T}fx = Tx$ for

all $f(x) \in f(E)$. The mapping \mathcal{T} is well defined because f is one-to-one. As (f,T) is Ciric-Suzuki type quasi-contractive hybrid pair, for any $x, y \in X$

$$\begin{aligned} \xi\left(d(fx,Tx),d(fx,fy)\right) &\leq 0\\ \text{implies that}\\ H(Tx,Ty) &\leq r \max\left\{d(fx,fy),d(fx,Tx),d(fy,Ty),d(fx,Ty),d(fy,Tx)\right\} \end{aligned} \tag{4.1}$$

for some $r \in \left[0, \frac{1}{b^2 + b}\right)$ and $\xi \in \Lambda$. Thus for all $fx, fy \in f(E)$,

 $\left\{ \begin{array}{l} \xi\left(d(fx, \Im fx), d(fx, fy)\right) \leq 0 \\ \text{implies the} \\ H(\Im fx, \Im fy) \leq r \max\left\{d(fx, fy), d(fx, \Im fx), d(fy, \Im fy), d(fx, \Im fy), d(fy, \Im fx)\right\} \end{array} \right.$

for some $r \in \left[0, \frac{1}{b^2 + b}\right)$ and $\xi \in \Lambda$. As f(X) is complete so is f(E). It follows from Theorem 2.1 that the mapping \mathfrak{T} on f(E) is MWP operator. Thus we may choose a point $u \in f(E)$ such that $u \in \mathfrak{T}u$. Since $u \in f(E) = f(X)$, there exists $x \in X$ such that fx = u. Hence $fx \in \mathfrak{T}fx = Tx$, that is, $x \in C(f, T)$. To prove $F(f,T) \neq \emptyset$: Suppose that (C_1) holds. Now, $\lim_{n \to \infty} f^n(x) = u$ for some $u \in X$ and the continuity of f at u imply that fu = u and hence $\lim_{n \to \infty} f^n(x) =$ fu. From w-compatibility of a pair (f,T), we have $f^n(x) \in T(f^n(x))$, that is $f^n(x) \in C(f,T)$ for all $n \in \mathbb{N}$. Suppose that $f^n(x) \neq f(u)$ for all n. Indeed, if $f^n(x) = f(u)$ for some n, then we have $u = fu = f^n(x) \in T(f^{n-1}(x)) = T(u)$ and hence the result. Note that

$$\xi \left(d(f^n(x), T\left(f^{n-1}(x)\right) \right), d(ff^{n-1}(x), fu) \right)$$

$$\leq \frac{1}{b} d(f^n(x), T\left(f^{n-1}(x)\right)) - d(ff^{n-1}(x), fu) = 0 - d(ff^{n-1}(x), fu) < 0.$$

Hence

$$\begin{aligned} &d(f^n x, Tu) &\leq H(Tf^{n-1}x, Tu) \\ &\leq r \max\left\{ d(f^n x, fu), d(f^n x, Tf^{n-1}x), d(fu, Tu), d(f^n x, Tu), d(fu, Tf^{n-1}x) \right\} \\ &\leq r \max\left\{ d(f^n x, fu), d(f^n x, f^n x), d(fu, Tu), d(f^n x, Tu), d(fu, f^n x) \right\} \\ &\leq r \max\left\{ d(f^n x, fu), d(f^n x, f^n x), d(fu, Tu), d(f^n x, Tu), d(fu, f^n x) \right\}. \end{aligned}$$

On taking limit as $n \to \infty$ on both sides of the above inequality, we obtain that $d(fu, Tu) \leq rd(fu, Tu)$. Hence d(fu, Tu) = 0 implies that $u = fu \in Tu$. That is, F(f, T) is nonempty. If (C₂) holds, then $f^2x = fx$ for some $x \in C(f, T)$. Also, f is T-weakly commuting, $fx = f^2x \in Tfx$. Hence $fx \in F(f, T)$. If (C₃) holds, then we have $\lim_{n\to\infty} f^n(u) = x$ for some $u \in X$ and $x \in C(f, T)$.

By continuity of $f, x = fx \in Tx$. Hence in all the three cases, we have $F(f,T) \neq \emptyset$.

Corollary 4.2. Let (X, d) be a b-metric space, $f : X \to X$, $T : X \to CB(X)$ with $T(X) \subseteq f(X)$ and f(X) a complete subspace of X. If for any $x, y \in X$

 $\xi(d(fx,Tx),d(fx,fy)) \leq 0$ implies that $H(Tx,Ty) \leq rd(fx,fy)$

where $r < \frac{1}{b^2 + b}$ and $\xi \in \Lambda$. Then C(f, T) is nonempty. Furthermore, F(f, T) is nonempty if any of the following conditions hold:

- **C**₄- The hybrid pair (f,T) is w-compatible, $\lim_{n\to\infty} f^n(x) = u$ for some $u \in X$ and $x \in C(f,T)$ and f is continuous at u.
- C₅- The mapping f is T-weakly commuting at some $x \in C(f,T)$ and $f^2x = fx$.
- **C**₆- The mapping f is continuous at at some $x \in C(f,T)$ and $\lim_{n \to \infty} f^n(u) = x$ for some $u \in X$.

5 Stability and uniform convergence results

In this section, we find an upper bound of Hausdorff distance between the fixed point sets of two Ciric-Suzuki type quasi-contractive multivalued operators and then study the uniform convergence of such sets in the setup of b-metric spaces.

Theorem 5.1. Let (X,d) be a complete b-metric space and $T_1, T_2 : X \to P(X)$. Suppose that T_i is Ciric-Suzuki type quasi-contractive multivalued operator for each $i \in \{1,2\}$. If there exists $\lambda > 0$ such that

$$H(T_1x, T_2x) \le \lambda \tag{5.1}$$

for all $x \in X$. Then $F(T_i)$ is closed subset of X and T_i is a MWP operator for each $i \in \{1, 2\}$. Also, the following holds:

$$H(F(T_1), F(T_2)) \le \frac{\lambda}{1 - b \max_{i \in \{1, 2\}} \gamma_i}$$
(5.2)

where

$$\gamma_i = \frac{b\beta_i}{1 - b\beta_i}, \ \beta_i = r_i + \alpha_i, \ and \ \alpha_i = \frac{1}{2}\left(\frac{1}{b^2 + b} - r_i\right) \ for \ i \in \{1, 2\}.$$

Proof. By Theorem 2.1, $F(T_i)$ is nonempty for each $i \in \{1, 2\}$. Let $\{x_n\}$ be a sequence in $F(T_1)$ such that $x_n \to z$ as $n \to \infty$. Note that

$$\begin{aligned} \xi \left(d(x_n, T_1 x_n), d(z, x_n) \right) &\leq & \frac{1}{b} d(x_n, T_1 x_n) - d(z, x_n) \\ &\leq & d(x_n, T_1 x_n) - d(z, x_n) \\ &\leq & d(x_n, x_n) - d(z, x_n) = -d(z, x_n) \leq 0. \end{aligned}$$

Hence, we have

$$d(z, T_1z) \leq bd(z, x_n) + bd(x_n, T_1z)$$

$$\leq bd(z, x_n) + bH(T_1z, T_1x_n)$$

$$\leq bd(z, x_n) + br_1 \max\{d(z, x_n), d(z, T_1z), d(T_1x_n, x_n), d(x_n, T_1z), d(z, T_1x_n)\}$$

$$\leq bd(z, x_n) + br_1 \max\{d(z, x_n), d(z, T_1z), d(x_n, T_1z)\}.$$

On taking the limit as $n \to \infty$ we obtain that

$$d(z, T_1z) \le br_1d(z, T_1z) \le \frac{1}{b+1}d(z, T_1z).$$

As $b \ge 1$, so $d(z, T_1 z) = 0$, that is, $z \in T_1 z$. Hence $F(T_1)$ is closed. Similarly, $F(T_2)$ is a closed subset of X. Following arguments similar to those in the proof of Theorem 2.1, we conclude that T_i is MWP operator for each $i \in \{1, 2\}$. We now show that (5.2) holds for all x in X. As $r_i < \frac{1}{b^2 + b} < 1$, there exist $\alpha_i \in \mathbb{R}^+$ such that $\frac{r_i}{2} + \alpha_i = \frac{1}{2} \left(\frac{1}{b^2 + b} \right)$ which gives that $r_i + \alpha = \frac{1}{2} \left(\frac{1}{b^2 + b} + r_i \right)$.

We set $\beta_i = r_i + \alpha_i$. Note that $0 < \beta_i < 1$ and $\alpha_i > 0$. Following arguments similar to those in the proof of Theorem 2.1 with $x_0 \in F(T_1)$ and $x_1 \in T_2 x_0$, we obtain a Cauchy sequence $\{x_n\}$ in X such that $x_{n+1} \in T_2 x_n$ for all $n \ge 1$ and it satisfies:

$$d(x_n, x_{n+1}) \le \gamma_2 d(x_{n-1}, x_n)$$

and

$$d(x_n, x_{n+1}) \le \gamma_2 d(x_{n-1}, x_n) \le (\gamma_2)^2 d(x_{n-2}, x_{n-1}) \le \dots \le (\gamma_2)^n d(x_0, x_1).$$
(5.3)

where $\gamma_2 = \frac{b\beta_2}{1-b\beta_2}$. We choose an element u in X such that $x_n \to u$ as $n \to \infty$ and $u \in T_2 u$. From (5.3), we obtain that

$$d(x_n, x_{n+p}) \leq bd(x_n, x_{n+1}) + \dots + b^{p-1}d(x_{n+p-2}, x_{n+p-1}) + b^{p-1}d(x_{n+p-1}, x_{n+p})$$

$$\leq b\gamma_2^n d(x_0, x_1) + \dots + b^{p-1}\gamma_2^{n+p-2}d(x_0, x_1) + b^{p-1}\gamma_2^{n+p-1}d(x_0, x_1)$$

$$\leq b\gamma_2^n d(x_0, x_1) \left(1 + b\gamma_2 + \dots + (b\gamma_2)^{p-2} + \frac{1}{b}(b\gamma_2)^{p-1}\right)$$

$$\leq b\gamma_2^n d(x_0, x_1) \left(1 + b\gamma_2 + \dots + (b\gamma_2)^{p-2} + (b\gamma_2)^{p-1}\right)$$

$$\leq \frac{(b\gamma_2)^n \left(1 - (b\gamma_2)^p\right)}{1 - b\gamma_2} d(x_0, x_1).$$

Thus, we have

$$d(x_n, x_{n+p}) \le \frac{(b\gamma_2)^n \left(1 - (b\gamma_2)^p\right)}{1 - b\gamma_2} d(x_0, x_1).$$
(5.4)

On taking limit as $p \to \infty$ on both sides of the above inequality, we have

$$d(x_n, u) \le \frac{(b\gamma_2)^n}{1 - b\gamma_2} d(x_0, x_1).$$
(5.5)

Also, from (5.1) and (5.5), we have

$$d(x_0, u) \le \frac{1}{1 - b\gamma_2} d(x_0, x_1) \le \frac{\lambda}{1 - b\gamma_2}.$$
(5.6)

Similarly, for each $z_0 \in T_2 z_0$, we get $v \in T_1 v$ such that

$$d(z_0, v) \le \frac{1}{1 - b\gamma_1} d(z_0, z_1) \le \frac{\lambda}{1 - b\gamma_1}.$$
(5.7)

It follows from (5.6), (5.7) and Lemma 1.11 that

$$H(Fix(T_1), Fix(T_2)) \le \frac{\lambda}{1 - \max\{b\gamma_1, b\gamma_2\}} = \frac{\lambda}{1 - b \max_{i \in \{1, 2\}} \gamma_i}.$$

The following theorem generalizes the results in [30, 37] for a sequence of Ciric-Suzuki type quasi-contractive multivalued operators in b-metric spaces.

Theorem 5.2. Let (X, d) be a complete b-metric space and $T_n : X \to P(X)$, a sequence of Ciric-Suzuki type quasi-contractive multivalued operator for each $n \in \mathbb{N}$. If $\{T_n\}$ converges to T_0 uniformly on X, then $\lim_{n \to \infty} H(F(T_n), F(T_0)) = 0$. *Proof.* Let γ_i for each $i \in \mathbb{N}^*$ be as given in the proof of Theorem 5.1. Then $\gamma_i > 0$ for $i \in \mathbb{N}^*$ and $b \max_{i \in \mathbb{N}^*} \gamma_i < 1$. As $\{T_n\}$ converges to T_0 uniformly on X, so for any $\varepsilon > 0$, there exists an integer $n_0 \in \mathbb{N}$ such that

$$\sup_{x \in X} H(T_n(x), T_0(x)) < \left(1 - b \max_{i \in \mathbb{N}^*} \gamma_i\right) \varepsilon$$

for all $n \ge n_0$. If we set, $\lambda = \left(1 - b \max_{i \in \mathbb{N}^*} \gamma_i\right) \varepsilon$, then $H(T_n(x), T_0(x)) < \lambda$ for all $n \ge n_0$ and $x \in X$. By Theorem 5.1, we have

$$H(F(T_n), F(T_0)) \le \frac{\lambda}{\left(1 - b \max_{i \in \mathbb{N}^*} \gamma_i\right)} = \varepsilon$$

for all $n \ge n_0$.

6 Multivalued fractals in b-metric spaces

Let (X, d) be a b-metric space and $T_i : X \to K(X)$, where K(X) a collection of nonempty compact subsets of X.

The system $T = (T_1, T_2, ..., T_k)$ is called an iterated multifunction system (briefly IMS). If T_i is upper semicontinuous for each i = 1, 2, ..., k, then the single valued operator $\mathfrak{T}_T : K(X) \to K(X)$ defined by $\mathfrak{T}_T(A) = \bigcup_{i=1}^k T_i(A)$ is called multi fractal generated by the IMS $T = (T_1, T_2, ..., T_k)$. Since the image of a compact set under an upper semicontinuous multivalued mapping is compact, therefore operator \mathfrak{T}_T is well defined ([8, 10, 14]).

A set $\hat{A} \in K(X)$ is called multivalued fractal with respect to IMS $T = (T_1, T_2, ..., T_k)$ if and only if $\hat{A} \in F(\mathfrak{T}_T)$.

Theorem 6.1. Let (X, d) be a b-metric space and $T_i : X \to K(X)$ upper semicontinuous multivalued operators for each $i \in \{1, 2, ..., k\}$. Suppose that for any $x, y \in X$,

 $\begin{aligned} &\xi\left(d(x,T_ix),d(x,y)\right) \leq 0 \text{ implies that} \\ &H(T_ix,T_iy) \leq r_i \max\left\{d(x,y),d(x,T_iy),d(y,T_ix)\right\} \end{aligned}$

where $r_i < \frac{1}{b^2 + b}$ for each $i \in \{1, 2, ..., k\}$ and $\xi \in \Lambda$. If $\frac{1}{b}d(x, T_i x) \le d(x, y)$ for all $x \in A$, $y \in B$ and $i \in \{1, 2, ..., k\}$. Then $\mathfrak{T}_T : (K(X), H) \to (K(X), H)$ is a Ciric-Suzuki type quasi-contractive operator, that is

 $\xi \left(H(A, \mathfrak{T}_T A), H(A, B) \right) \leq 0 \text{ implies that} \\ H(\mathfrak{T}_T A, \mathfrak{T}_T B) \leq r \max \left\{ H(A, B), H(A, \mathfrak{T}_T A), H(B, \mathfrak{T}_T B), H(A, \mathfrak{T}_T B), H(B, \mathfrak{T}_T A) \right\}$ (6.1)

for all $A, B \in K(X)$. Also, there exists a unique multivalued fractal $\mathring{A} \in K(X)$ such that $\lim_{n \to \infty} H(\mathfrak{T}_T^n A, \mathring{A}) = 0$ for every $A \in K(X)$.

Proof. For each $i \in \{1, 2, ..., k\}$, we have $\frac{1}{b}d(x, T_ix) \leq d(x, y)$ for all $x \in A, y \in B$. Thus $\xi(d(x, T_ix), d(x, y)) \leq 0$ for all $x \in A, y \in B$. Hence, for each $i \in \{1, 2, ..., k\}$

 $H(T_{i}x, T_{i}y) \le r_{i} \max \{ d(x, y), d(x, T_{i}x), d(y, T_{i}y), d(x, T_{i}y), d(y, T_{i}x) \}$ (6.2)

for all $x \in A, y \in B$. By (6.2), we have

$$\begin{split} \delta(T_iA, T_iB) &= \sup_{x \in A} \left(\inf_{y \in B} \delta(T_ix, T_iy) \right) \\ &= \sup_{x \in A} \inf_{y \in B} \delta(T_ix, T_iy) \leq \sup_{x \in A} \inf_{y \in B} H(T_ix, T_iy) \\ &\leq \sup_{x \in A} \inf_{y \in B} r_i \max \left\{ d(x, y), d(x, T_iy), d(y, T_ix) \right\} \\ &\leq r_i \max \left\{ \sup_{x \in A} \inf_{y \in B} d(x, y), \sup_{x \in A} \inf_{y \in B} d(x, T_iy), \sup_{x \in A} \inf_{y \in B} d(y, T_ix) \right\} \\ &\leq r_i \max \left\{ \delta(A, B), \delta(A, T_iB), \delta(B, T_iA) \right\} \\ &= r_i \max \left\{ \delta(A, B), \delta(A, \mathcal{T}_TB), \delta(B, \mathcal{T}_TA) \right\} \\ &\leq r_i \max \left\{ H(A, B), H(A, \mathcal{T}_TA), H(B, \mathcal{T}_TB), H(A, \mathcal{T}_TB), H(B, \mathcal{T}_TA) \right\} \end{split}$$

for all $A, B \in K(X)$, for each $i \in \{1, 2, ..., k\}$. That is,

$$\delta(T_iA, T_iB) \le r_i \max \{ H(A, B), H(A, \mathfrak{T}_TA), H(B, \mathfrak{T}_TB), H(A, \mathfrak{T}_TB), H(B, \mathfrak{T}_TA) \}$$
for all $A, B \in K(X)$, for each $i \in \{1, 2, ..., k\}$. Similarly,
$$(6.3)$$

$$\delta(T_i B, T_i A) \le r_i \max\left\{H(A, B), H(A, \mathfrak{T}_T A), H(B, \mathfrak{T}_T B), H(A, \mathfrak{T}_T B), H(B, \mathfrak{T}_T A)\right\}$$
(6.4)

for all $A, B \in K(X)$, for each $i \in \{1, 2, ..., k\}$. Also, from (6.3) and (6.4) we obtain that

$$H(T_iA, T_iB) \le r_i \max\left\{H(A, B), H(A, \mathfrak{T}_TA), H(B, \mathfrak{T}_TB), H(A, \mathfrak{T}_TB), H(B, \mathfrak{T}_TA)\right\}$$

$$(6.5)$$

for all $A, B \in K(X)$, for each $i \in \{1, 2, ..., k\}$. Note that

$$H\left(\bigcup_{i=1}^{k} T_{i}A, \bigcup_{i=1}^{k} T_{i}B\right) \leq \max_{i=1,2,...,k} \{H(T_{i}A, T_{i}B)\}$$

$$\leq \max_{i=1,2,...,k} (r_{i} \max\{H(A, B), H(A, \mathfrak{T}_{T}A), H(B, \mathfrak{T}_{T}B), H(A, \mathfrak{T}_{T}B), H(B, \mathfrak{T}_{T}A)\})$$

$$\leq \left(\max_{i=1,2,...,k} r_{i}\right) \max\{H(A, B), H(A, \mathfrak{T}_{T}A), H(B, \mathfrak{T}_{T}B), H(A, \mathfrak{T}_{T}B), H(B, \mathfrak{T}_{T}A)\}.$$

Hence

 $H(\mathfrak{T}_T A, \mathfrak{T}_T B) \le r \max\left\{H(A, B), H(A, \mathfrak{T}_T A), H(B, \mathfrak{T}_T B), H(A, \mathfrak{T}_T B), H(B, \mathfrak{T}_T A)\right\},\$

where, $r = \max_{i \in \{1, 2, \dots, k\}} r_i$. Consequently, $\xi(H(A, \mathfrak{T}_T A), H(A, B)) \leq 0$ implies that

that

 $H(\mathfrak{I}_T A, \mathfrak{I}_T B) \le r \max \{H(A, B), H(A, \mathfrak{I}_T A), H(B, \mathfrak{I}_T B), H(A, \mathfrak{I}_T B), H(B, \mathfrak{I}_T A)\}$

for all $A, B \in K(X)$. It now follows from Corollary 2.7 that $F(\mathfrak{T}_T) = \{A\}$ and $\lim_{T \to \infty} H(\mathfrak{T}_T^n A, A) = 0$ for every $A \in K(X)$.

Acknowledgment

The authors extend their appreciation to the International Scientific partnership program (ISPP) at King Saud University for funding this research work through ISPP#0034.

References

- M. Abbas, Lj. Ćirić, B. Damjanović, M.A. Khan, Coupled coincidence and common fixed point theorems for hybrid pair of mappings, Fixed Point Theory Appl. 2012 (4)(2012) 11 pages.
- [2] A. Amini Harandi, Fixed point theory for set-valued quasi-contraction maps in metric spaces, Appl. Math. Lett. 24 (2011) 1791–1794.
- [3] T.V. An, N.V Dung, Z. Kadelburg, S. Radenović, Various generalizations of metric spaces and fixed point theorems, RACSAM 109 (2015) 175–198.
- [4] T.V. An, L.Q. Tuyen, N.V. Dung, Stone-type theorem on b-metric spaces and applications, Topology Appl. 185-186 (2015) 50–64.
- [5] T.V. An, N.V Dung, Answers to Kirk-Shahzad's questions on strong bmetric spaces, Taiwanese J. Math. 20 (5) (2016) 1175–1184.
- [6] H. Aydi, M.F. Bota, E. Karapınar, S. Mitrović, A fixed point theorem for set-valued quasicontractions in b-metric spaces, Fixed Point Theory Appl. 2012 (88)(2012) 8 pages.
- [7] S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fundam. Math. 3 (1922) 133–181.
- [8] C. Berge, Espaces topologiques-Fonctions multivoques, Dunod, Paris, (1966).

- [9] M. Boriceanu, A. Petruşel, I.A. Rus, Fixed point theorems for some multivalued generalized contractions in b-metric spaces, Internat. J. Math. Statistics 6 (2010) 65–76.
- [10] M. Boriceanu, M. Bota, A. Petruşel, Multivalued fractals in b-metric spaces, Cent. Eur. J. Math. 8 (2)(2010) 367–377.
- [11] S. Cobzaş, Fixed points and completeness in metric and in generalized metric spaces, arXiv preprint arXiv: 1508.05173 (2016) 71 pages.
- [12] Lj. Cirić, A generalization of Banach contraction principle, Proc. Am. Math. Soc., 45 (1974) 267–273.
- [13] Lj. Cirić, M. Abbas, M. Rajović, B. Ali, Suzuki type fixed point theorems for generalized multivalued mappings on a set endowed with two b-metric, Appl. Math. Comput., 219 (2012) 1712–1723.
- [14] C. Chifu, G. Petruşel, Fixed points for multivalued contractions in bmetric spaces with applications to fractals, Taiwan. J. Math., 18 (5)(2014) 1365–1375.
- [15] E.H. Connell, Properties of fixed point spaces, Proc. Amer. Math. Soc., 10 (1959) 974–979.
- [16] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993) 5–11.
- [17] S. Czerwik, K. Dlutek, S.L. Singh, Round-off stability of iteration procedures for operators in b-metric spaces, J. Natur. Phys. Sci. 11 (1997) 87–94.
- [18] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin. Mat. Fis. Univ. Modena, 46 (1998) 263–276.
- [19] N. Van Dung, V.T. Le Hang, On relaxations of contraction constants and Caristi's theorem in b-metric spaces, J. Fixed Point Theory Appl., 18 (2) (2016) 267–284.
- [20] M. Elekes, On a converse to Banach's fixed point theorem, Proc. Amer. Math. Soc. 137 (9) (2009) 3139–3146.
- [21] R.H. Haghi, Sh. Rezapour, N. Shahzad, Some fixed point generalisations are not real generalizations, Nonlinear Anal. 74 (2011) 1799–1803.
- [22] N. Hussain, D. Dorić, Z. Kadelburg, S. Radenović, Suzuki-type fixed point results in metric type spaces, Fixed point theory Appl. 2012 (126)(2012) 12 pages.

- [23] M. Jovanović, Z. Kadelburg, S. Radenović, Common fixed point results in metric type spaces, Fixed Point Theory Appl. 2010 (2010) 15 pages.
- [24] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 10 (1968) 71–76.
- [25] R. Kannan, Some results on fixed points II, Amer. Math. Monthly 76 (1969) 405–408.
- [26] W.A. Kirk, N. Shahzad, Fixed point theory in distance spaces, Springer, Cham (2014).
- [27] M. Kikkawa, T. Suzuki, Some similarity between contractions and Kannan mappings, Fixed Point Theory Appl. 2008 (2008) 8 pages.
- [28] M. Kikkawa, T. Suzuki, Three fixed point theorems for generalized contractions with constants in complete metric spaces, Nonlinear Anal. 69 (2008) 2942–2949.
- [29] M.A. Kutbi, E. Karapinar, J. Ahmad, A. Azam, Some fixed point results for multivalued mappings in b-metric spaces, J. Inequal. Appl. 2014 (126)(2014) 11 pages.
- [30] T.C. Lim, Fixed point stability for set valued contractive mappings with applications to generalized differential equations, J. Math. Anal. Appl. 110 (1985) 436–441.
- [31] S.B. Nadler Jr., multivalued contraction mappings, Pac. J. Math. 30 (1969) 475–488.
- [32] S. Park, B. E. Rhoades, Comments on characterizations for metric completeness, Math. Japon. 31 (1)(1986) 95–97.
- [33] S. Reich, Fixed Points of contractive functions, Boll. Unione Mat. Ital. 5 (1972) 26–42.
- [34] I.A. Rus, A. Petruşel, A. Sîntămărian, Data dependence of the fixed point set of some multivalued weakly Picard operators, Nonlinear Anal. 52 (2003) 1947–1959.
- [35] S.L. Singh, B. Prasad, Some coincidence theorems and stability of iterative procedures, Comput. Math. Appl. 55 (2008) 2512–2520.
- [36] S.L. Singh, S. Czerwik, K. Krol, A. Singh, Coincidences and fixed points of hybrid contractions, Tamsui Oxford Univ. J. Math. Sci. 24 (2008) 401– 416.

- [37] S.L. Singh, S.N. Mishra, W. Sinkala, A note on fixed point stability for generalized set-valued contractions, Appl. Math. Lett. 25 (2012) 1708– 1710.
- [38] P.V. Subrahmanyam, Completeness and fixed-points, Monatsh. Math. 80 (1975) 325–330.
- [39] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (5)(2008) 1861–1869.

Hanan Alolaiyan Department of Mathematics, King Saud University, Saudi Arabia. Email: holayan@ksu.edu.sa

Basit Ali Department of Mathematics and Applied Mathematics, University of Pretoria, Lynnwood road, Pretoria 0002, South Africa, and Department of Mathematics, School of Sciences, University of Management and Technology, C-II, Johar Town, Lahore, 54770, Pakistan. Email: basit.aa@gmail.com, basit.ali@umt.edu.pk

Mujahid Abbas Department of Mathematics, Government College University (GCU), Lahore-54000, Pakistan, and Department of Mathematics and Applied Mathematics, University of Pretoria, Lynnwood road, Pretoria 0002, South Africa. Email: abbas.mujahid@gmail.com CHARACTERIZATION OF A B-MATRIC SPACE COMPLETENESS VIA THE EXISTENCE OF A FIXED POINT OF CIRIC-SUZUKI TYPE QUASI-CONTRACTIVE MULTIVALUED OPERATORS AND APLICATIONS 34